Processing math: 100%

TF 2.0 for Reinforcement Learning

Lessons

  1. Introduction

  2. Setting up your Reinforcement Learning Environment

  3. Markov Decision Processes

  4. Introduction to the OpenAI Gym Interface

  5. Q learning

  6. Gym Wrappers

  7. Function Approximation and Tensorflow

  8. Q-learning with Tensorflow

  9. Deep Q-learning

  10. Rainbow - Improvements to Deep Q-learning

  11. Policy Gradients

  12. Advantage Actor-Critic (A2C)

  13. Generalized Advantage Estimation (GAE)

  14. Trust Region Policy Optimization (TRPO)

  15. Proximal Policy Optimization (PPO)

  16. Entropy

  17. KL-Divergence

  18. List of Important Papers

  19. Neural Network Design