TF 2.0 for Reinforcement Learning

Lessons

  1. Introduction

  2. Setting up your Reinforcement Learning Environment

  3. Markov Decision Processes

  4. Introduction to the OpenAI Gym Interface

  5. learning

  6. Gym Wrappers

  7. Function Approximation and Tensorflow

  8. -learning with Tensorflow

  9. Deep -learning

  10. Rainbow - Improvements to Deep -learning

  11. Policy Gradients

  12. Advantage Actor-Critic (A2C)

  13. Generalized Advantage Estimation (GAE)

  14. Trust Region Policy Optimization (TRPO)

  15. Proximal Policy Optimization (PPO)

  16. Entropy

  17. KL-Divergence

  18. List of Important Papers

  19. Neural Network Design